Subtraction (difference between two natural numbers) |
Fixpoint
minus [n:nat] : nat -> nat :=
[m:nat]Cases n m of
O _ => O
| (S k) O => (S k)
| (S k) (S l) => (minus k l)
end.
Lemma
minus_plus_simpl :
(n,m,p:nat)((minus n m)=(minus (plus p n) (plus p m))).
Proof
.
NewInduction p; Simpl; Auto with arith.
Qed
.
Hints
Resolve minus_plus_simpl : arith v62.
Lemma
minus_n_O : (n:nat)(n=(minus n O)).
Proof
.
NewInduction n; Simpl; Auto with arith.
Qed
.
Hints
Resolve minus_n_O : arith v62.
Lemma
minus_n_n : (n:nat)(O=(minus n n)).
Proof
.
NewInduction n; Simpl; Auto with arith.
Qed
.
Hints
Resolve minus_n_n : arith v62.
Lemma
plus_minus : (n,m,p:nat)(n=(plus m p))->(p=(minus n m)).
Proof
.
Intros n m p; Pattern m n; Apply nat_double_ind; Simpl; Intros.
Replace (minus n0 O) with n0; Auto with arith.
Absurd O=(S (plus n0 p)); Auto with arith.
Auto with arith.
Qed
.
Hints
Immediate
plus_minus : arith v62.
Lemma
minus_plus : (n,m:nat)(minus (plus n m) n)=m.
Symmetry; Auto with arith.
Save
.
Hints
Resolve minus_plus : arith v62.
Lemma
le_plus_minus : (n,m:nat)(le n m)->(m=(plus n (minus m n))).
Proof
.
Intros n m Le; Pattern n m; Apply le_elim_rel; Simpl; Auto with arith.
Qed
.
Hints
Resolve le_plus_minus : arith v62.
Lemma
le_plus_minus_r : (n,m:nat)(le n m)->(plus n (minus m n))=m.
Proof
.
Symmetry; Auto with arith.
Qed
.
Hints
Resolve le_plus_minus_r : arith v62.
Lemma
minus_Sn_m : (n,m:nat)(le m n)->((S (minus n m))=(minus (S n) m)).
Proof
.
Intros n m Le; Pattern m n; Apply le_elim_rel; Simpl; Auto with arith.
Qed
.
Hints
Resolve minus_Sn_m : arith v62.
Lemma
lt_minus : (n,m:nat)(le m n)->(lt O m)->(lt (minus n m) n).
Proof
.
Intros n m Le; Pattern m n; Apply le_elim_rel; Simpl; Auto with arith.
Intros; Absurd (lt O O); Auto with arith.
Intros p q lepq Hp gtp.
Elim (le_lt_or_eq O p); Auto with arith.
Auto with arith.
NewInduction 1; Elim minus_n_O; Auto with arith.
Qed
.
Hints
Resolve lt_minus : arith v62.
Lemma
lt_O_minus_lt : (n,m:nat)(lt O (minus n m))->(lt m n).
Proof
.
Intros n m; Pattern n m; Apply nat_double_ind; Simpl; Auto with arith.
Intros; Absurd (lt O O); Trivial with arith.
Qed
.
Hints
Immediate
lt_O_minus_lt : arith v62.
Theorem
pred_of_minus : (x:nat)(pred x)=(minus x (S O)).
NewInduction x; Auto with arith.
Save
.
Theorem
inj_minus_aux: (x,y:nat) ~(le y x) -> (minus x y) = O.
Intros y x; Pattern y x ; Apply nat_double_ind; [
Simpl; Trivial with arith
| Intros n H; Absurd (le O (S n)); [ Assumption | Apply le_O_n]
| Simpl; Intros n m H1 H2; Apply H1;
Unfold not ; Intros H3; Apply H2; Apply le_n_S; Assumption].
Save
.