Module Coq.Sets.Multiset

Require Permut.

Implicit Arguments On.

Section multiset_defs.

Variable A : Set.
Variable eqA : A -> A -> Prop.
Hypothesis Aeq_dec : (x,y:A){(eqA x y)}+{~(eqA x y)}.

Inductive multiset : Set :=
      Bag : (A->nat) -> multiset.

Definition EmptyBag := (Bag [a:A]O).
Definition SingletonBag := [a:A]
        (Bag [a':A]Cases (Aeq_dec a a') of
                      (left _) => (S O)
                   | (right _) => O
                   end
        ).

Definition multiplicity : multiset -> A -> nat :=
  [m:multiset][a:A]let (f) = m in (f a).

multiset equality

Definition meq := [m1,m2:multiset]
    (a:A)(multiplicity m1 a)=(multiplicity m2 a).

Hints Unfold meq multiplicity.

Lemma meq_refl : (x:multiset)(meq x x).
Proof.
Induction x; Auto.
Qed.
Hints Resolve meq_refl.

Lemma meq_trans : (x,y,z:multiset)(meq x y)->(meq y z)->(meq x z).
Proof.
Unfold meq.
Induction x; Induction y; Induction z.
Intros; Rewrite H; Auto.
Qed.

Lemma meq_sym : (x,y:multiset)(meq x y)->(meq y x).
Proof.
Unfold meq.
Induction x; Induction y; Auto.
Qed.
Hints Immediate meq_sym.

multiset union

Definition munion := [m1,m2:multiset]
    (Bag [a:A](plus (multiplicity m1 a)(multiplicity m2 a))).

Lemma munion_empty_left :
     (x:multiset)(meq x (munion EmptyBag x)).
Proof.
Unfold meq; Unfold munion; Simpl; Auto.
Qed.
Hints Resolve munion_empty_left.

Lemma munion_empty_right :
     (x:multiset)(meq x (munion x EmptyBag)).
Proof.
Unfold meq; Unfold munion; Simpl; Auto.
Qed.

Require Plus.

Lemma munion_comm : (x,y:multiset)(meq (munion x y) (munion y x)).
Proof.
Unfold meq; Unfold multiplicity; Unfold munion.
Induction x; Induction y; Auto with arith.
Qed.
Hints Resolve munion_comm.

Lemma munion_ass :
      (x,y,z:multiset)(meq (munion (munion x y) z) (munion x (munion y z))).
Proof.
Unfold meq; Unfold munion; Unfold multiplicity.
Induction x; Induction y; Induction z; Auto with arith.
Qed.
Hints Resolve munion_ass.

Lemma meq_left : (x,y,z:multiset)(meq x y)->(meq (munion x z) (munion y z)).
Proof.
Unfold meq; Unfold munion; Unfold multiplicity.
Induction x; Induction y; Induction z.
Intros; Elim H; Auto with arith.
Qed.
Hints Resolve meq_left.

Lemma meq_right : (x,y,z:multiset)(meq x y)->(meq (munion z x) (munion z y)).
Proof.
Unfold meq; Unfold munion; Unfold multiplicity.
Induction x; Induction y; Induction z.
Intros; Elim H; Auto.
Qed.
Hints Resolve meq_right.

Here we should make multiset an abstract datatype, by hiding Bag, munion, multiplicity; all further properties are proved abstractly

Lemma munion_rotate :
   (x,y,z:multiset)(meq (munion x (munion y z)) (munion z (munion x y))).
Proof.
Intros; Apply (op_rotate multiset munion meq); Auto.
Exact meq_trans.
Qed.

Lemma meq_congr : (x,y,z,t:multiset)(meq x y)->(meq z t)->
                  (meq (munion x z) (munion y t)).
Proof.
Intros; Apply (cong_congr multiset munion meq); Auto.
Exact meq_trans.
Qed.

Lemma munion_perm_left :
   (x,y,z:multiset)(meq (munion x (munion y z)) (munion y (munion x z))).
Proof.
Intros; Apply (perm_left multiset munion meq); Auto.
Exact meq_trans.
Qed.

Lemma multiset_twist1 : (x,y,z,t:multiset)
   (meq (munion x (munion (munion y z) t)) (munion (munion y (munion x t)) z)).
Proof.
Intros; Apply (twist multiset munion meq); Auto.
Exact meq_trans.
Qed.

Lemma multiset_twist2 : (x,y,z,t:multiset)
   (meq (munion x (munion (munion y z) t)) (munion (munion y (munion x z)) t)).
Proof.
Intros; Apply meq_trans with (munion (munion x (munion y z)) t).
Apply meq_sym; Apply munion_ass.
Apply meq_left; Apply munion_perm_left.
Qed.

specific for treesort

Lemma treesort_twist1 : (x,y,z,t,u:multiset) (meq u (munion y z)) ->
   (meq (munion x (munion u t)) (munion (munion y (munion x t)) z)).
Proof.
Intros; Apply meq_trans with (munion x (munion (munion y z) t)).
Apply meq_right; Apply meq_left; Trivial.
Apply multiset_twist1.
Qed.

Lemma treesort_twist2 : (x,y,z,t,u:multiset) (meq u (munion y z)) ->
   (meq (munion x (munion u t)) (munion (munion y (munion x z)) t)).
Proof.
Intros; Apply meq_trans with (munion x (munion (munion y z) t)).
Apply meq_right; Apply meq_left; Trivial.
Apply multiset_twist2.
Qed.

End multiset_defs.

Implicit Arguments Off.

Hints Unfold meq multiplicity : v62 datatypes.
Hints Resolve munion_empty_right munion_comm munion_ass meq_left meq_right munion_empty_left : v62 datatypes.
Hints Immediate meq_sym : v62 datatypes.


Index