The integer logarithms with base 2.
There are three logarithms, depending on the rounding of the real 2-based logarithm:
|
Require
ZArith.
Require
Omega.
Require
Zcomplements.
Require
Zpower.
Section
Log_pos.
First we build log_inf and log_sup
|
Fixpoint
log_inf [p:positive] : Z :=
Cases p of
xH => `0`
| (xO q) => (Zs (log_inf q))
| (xI q) => (Zs (log_inf q))
end.
Fixpoint
log_sup [p:positive] : Z :=
Cases p of
xH => `0`
| (xO n) => (Zs (log_sup n))
| (xI n) => (Zs (Zs (log_inf n)))
end.
Hints
Unfold log_inf log_sup.
Then we give the specifications of log_inf and log_sup and prove their validity
|
Hints
Resolve Zle_trans : zarith.
Theorem
log_inf_correct : (x:positive) ` 0 <= (log_inf x)` /\
` (two_p (log_inf x)) <= (POS x) < (two_p (Zs (log_inf x)))`.
Induction x; Intros; Simpl;
[ Elim H; Intros Hp HR; Clear H; Split;
[ Auto with zarith
| Rewrite (two_p_S (Zs (log_inf p)) (Zle_le_S `0` (log_inf p) Hp));
Rewrite (two_p_S (log_inf p) Hp);
Rewrite (two_p_S (log_inf p) Hp) in HR;
Rewrite (POS_xI p); Omega ]
| Elim H; Intros Hp HR; Clear H; Split;
[ Auto with zarith
| Rewrite (two_p_S (Zs (log_inf p)) (Zle_le_S `0` (log_inf p) Hp));
Rewrite (two_p_S (log_inf p) Hp);
Rewrite (two_p_S (log_inf p) Hp) in HR;
Rewrite (POS_xO p); Omega ]
| Unfold two_power_pos; Unfold shift_pos; Simpl; Omega
].
Save
.
Definition
log_inf_correct1 :=
[p:positive](proj1 ? ? (log_inf_correct p)).
Definition
log_inf_correct2 :=
[p:positive](proj2 ? ? (log_inf_correct p)).
Opaque log_inf_correct1 log_inf_correct2.
Hints
Resolve log_inf_correct1 log_inf_correct2 : zarith.
Lemma
log_sup_correct1 : (p:positive)` 0 <= (log_sup p)`.
Induction p; Intros; Simpl; Auto with zarith.
Save
.
For every p , either p is a power of two and (log_inf p)=(log_sup p) either (log_sup p)=(log_inf p)+1
|
Theorem
log_sup_log_inf : (p:positive)
IF (POS p)=(two_p (log_inf p))
then (POS p)=(two_p (log_sup p))
else ` (log_sup p)=(Zs (log_inf p))`.
Induction p; Intros;
[ Elim H; Right; Simpl;
Rewrite (two_p_S (log_inf p0) (log_inf_correct1 p0));
Rewrite POS_xI; Unfold Zs; Omega
| Elim H; Clear H; Intro Hif;
[ Left; Simpl;
Rewrite (two_p_S (log_inf p0) (log_inf_correct1 p0));
Rewrite (two_p_S (log_sup p0) (log_sup_correct1 p0));
Rewrite <- (proj1 ? ? Hif); Rewrite <- (proj2 ? ? Hif);
Auto
| Right; Simpl;
Rewrite (two_p_S (log_inf p0) (log_inf_correct1 p0));
Rewrite POS_xO; Unfold Zs; Omega ]
| Left; Auto ].
Save
.
Theorem
log_sup_correct2 : (x:positive)
` (two_p (Zpred (log_sup x))) < (POS x) <= (two_p (log_sup x))`.
Intro.
Elim (log_sup_log_inf x).
Intros (E1,E2); Rewrite E2.
Split ; [ Apply two_p_pred; Apply log_sup_correct1 | Apply Zle_n ].
Intros (E1,E2); Rewrite E2.
Rewrite <- (Zpred_Sn (log_inf x)).
Generalize (log_inf_correct2 x); Omega.
Save
.
Lemma
log_inf_le_log_sup :
(p:positive) `(log_inf p) <= (log_sup p)`.
Induction p; Simpl; Intros; Omega.
Save
.
Lemma
log_sup_le_Slog_inf :
(p:positive) `(log_sup p) <= (Zs (log_inf p))`.
Induction p; Simpl; Intros; Omega.
Save
.
Now it's possible to specify and build the Log rounded to the nearest
|
Fixpoint
log_near[x:positive] : Z :=
Cases x of
xH => `0`
| (xO xH) => `1`
| (xI xH) => `2`
| (xO y) => (Zs (log_near y))
| (xI y) => (Zs (log_near y))
end.
Theorem
log_near_correct1 : (p:positive)` 0 <= (log_near p)`.
Induction p; Simpl; Intros;
[Elim p0; Auto with zarith | Elim p0; Auto with zarith | Trivial with zarith ].
Intros; Apply Zle_le_S.
Generalize H0; Elim p1; Intros; Simpl;
[ Assumption | Assumption | Apply ZERO_le_POS ].
Intros; Apply Zle_le_S.
Generalize H0; Elim p1; Intros; Simpl;
[ Assumption | Assumption | Apply ZERO_le_POS ].
Save
.
Theorem
log_near_correct2: (p:positive)
(log_near p)=(log_inf p)
\/(log_near p)=(log_sup p).
Induction p.
Intros p0 [Einf|Esup].
Simpl. Rewrite Einf.
Case p0; [Left | Left | Right]; Reflexivity.
Simpl; Rewrite Esup.
Elim (log_sup_log_inf p0).
Generalize (log_inf_le_log_sup p0).
Generalize (log_sup_le_Slog_inf p0).
Case p0; Auto with zarith.
Intros; Omega.
Case p0; Intros; Auto with zarith.
Intros p0 [Einf|Esup].
Simpl.
Repeat Rewrite Einf.
Case p0; Intros; Auto with zarith.
Simpl.
Repeat Rewrite Esup.
Case p0; Intros; Auto with zarith.
Auto.
Save
.
End
Log_pos.
Section
divers.
Number of significative digits. |
Definition
N_digits :=
[x:Z]Cases x of
(POS p) => (log_inf p)
| (NEG p) => (log_inf p)
| ZERO => `0`
end.
Lemma
ZERO_le_N_digits : (x:Z) ` 0 <= (N_digits x)`.
Induction x; Simpl;
[ Apply Zle_n
| Exact log_inf_correct1
| Exact log_inf_correct1].
Save
.
Lemma
log_inf_shift_nat :
(n:nat)(log_inf (shift_nat n xH))=(inject_nat n).
Induction n; Intros;
[ Try Trivial
| Rewrite -> inj_S; Rewrite <- H; Reflexivity].
Save
.
Lemma
log_sup_shift_nat :
(n:nat)(log_sup (shift_nat n xH))=(inject_nat n).
Induction n; Intros;
[ Try Trivial
| Rewrite -> inj_S; Rewrite <- H; Reflexivity].
Save
.
Is_power p means that p is a power of two
|
Fixpoint
Is_power[p:positive] : Prop :=
Cases p of
xH => True
| (xO q) => (Is_power q)
| (xI q) => False
end.
Lemma
Is_power_correct :
(p:positive) (Is_power p) <-> (Ex [y:nat](p=(shift_nat y xH))).
Split;
[ Elim p;
[ Simpl; Tauto
| Simpl; Intros; Generalize (H H0); Intro H1; Elim H1; Intros y0 Hy0;
Exists (S y0); Rewrite Hy0; Reflexivity
| Intro; Exists O; Reflexivity]
| Intros; Elim H; Intros; Rewrite -> H0; Elim x; Intros; Simpl; Trivial].
Save
.
Lemma
Is_power_or : (p:positive) (Is_power p)\/~(Is_power p).
Induction p;
[ Intros; Right; Simpl; Tauto
| Intros; Elim H;
[ Intros; Left; Simpl; Exact H0
| Intros; Right; Simpl; Exact H0]
| Left; Simpl; Trivial].
Save
.
End
divers.