
Diameter
Copyright © 2011-2012 Ericsson AB. All Rights Reserved.

Diameter 1.2
September 3 2012

Copyright © 2011-2012 Ericsson AB. All Rights Reserved.
The contents of this file are subject to the Erlang Public License, Version 1.1, (the "License"); you may not use
this file except in compliance with the License. You should have received a copy of the Erlang Public License
along with this software. If not, it can be retrieved online at http://www.erlang.org/. Software distributed under the
License is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See
the License for the specific language governing rights and limitations under the License. Ericsson AB. All Rights
Reserved..

September 3 2012

Ericsson AB. All Rights Reserved.: Diameter | 1

1.1 Introduction

2 | Ericsson AB. All Rights Reserved.: Diameter

1 Diameter Users Guide

The diameter application is a framework for building applications on top of the Diameter protocol.

1.1 Introduction
The diameter application is an implementation of the Diameter protocol as defined by RFC 3588. It supports arbitrary
Diameter applications by way of a dictionary interface that allows messages and AVP's to be defined and input into
diameter as configuration. It has support for all roles defined in the RFC: client, server and agent. This chapter provides
a short overview of the application.

A Diameter node is implemented by configuring a service and one or more transports using the interface module
diameter. The service configuration defines the Diameter applications to be supported by the node and, typically,
the capabilities that it should send to remote peers at capabilities exchange upon the establishment of transport
connections. A transport is configured on a service and provides protocol-specific send/receive functionality by way of
a transport interface defined by diameter and implemented by a transport module. The diameter application provides
two transport modules: diameter_tcp and diameter_sctp for transport over TCP (using gen_tcp) and SCTP (using
gen_sctp) respectively. Other transports can be provided by any module that implements diameter's transport interface.

While a service typically implements a single Diameter node (as identified by an Origin-Host AVP), transports can
themselves be associated with capabilities AVP's so that a single service can be used to implement more than one
Diameter node.

Each Diameter application defined on a service is configured with a callback module that implements the application
interface through which diameter communicates the connectivity of remote peers, requests peer selection for outgoing
requests, and communicates the reception of incoming Diameter request and answer messages. An application using
diameter implements these application callback modules to provide the functionality of the Diameter node(s) it
implements.

Each Diameter application is also configured with a dictionary module that provide encode/decode functionality
for outgoing/incoming Diameter messages belonging to the application. A dictionary module is generated from a
specification file using the diameterc utility. Dictionaries for the RFC 3588 Diameter Common Messages, Base
Accounting and Relay applications are provided with the diameter application.

1.2 Usage
To be written.

1.3 Examples
Example code can be found in the diameter application's examples subdirectory.

1.4 Standards Compliance
Known points of questionable or non-compliance.

1.4 Standards Compliance

Ericsson AB. All Rights Reserved.: Diameter | 3

1.4.1 RFC 3588
• The End-to-End Security framework (section 2.9) isn't implemented since it is largely unspecified. The document

that was to describe it (reference [AAACMS]) was abandoned in an uncompleted state several years ago and the
current draft RFC deprecates the framework, including the P Flag in the AVP header.

• There is no TLS support over SCTP. RFC 3588 requires that a Diameter server support TLS but in practise this
seems to mean TLS over SCTP since there are limitations with running over SCTP: see RFC 6083 (DTLS over
SCTP), which is a response to RFC 3436 (TLS over SCTP). The current RFC 3588 draft acknowledges this by
equating TLS with TLS/TCP and DTLS/SCTP but we do not yet support DTLS.

• There is no explicit support for peer discovery (section 5.2). It can possibly be implemented on top of diameter
as is but this is probably something that diameter should do. The current draft deprecates portions of the original
RFC's mechanisms however.

• The peer state machine's election process (section 5.6.4) isn't implemented as specified since it assumes knowledge
of a peer's Origin-Host before sending it a CER. (The identity becoming known upon reception of CEA.) The
possibility of configuring the peer's Origin-Host could be added, along with handling of the case that it sends
something else, but for many applications this will just be unnecessary configuration of a value that it has no
control over.

1.4.2 RFC 3539
RFC 3539 is more difficult to comply to since it discusses problems as much as it requires functionality but all the
MUST's are covered, the watchdog state machine being the primary one. Of the optional functionality, load balancing
is left to the diameter user (since it's the one deciding who to send to) and there is no Congestion Manager.

1.4 Standards Compliance

4 | Ericsson AB. All Rights Reserved.: Diameter

2 Reference Manual

The Diameter application is a framework for building applications on top of the Diameter protocol.

diameter

Ericsson AB. All Rights Reserved.: Diameter | 5

diameter
Erlang module

This module provides the interface with which a user can implement a Diameter node that sends and receives messages
using the Diameter protocol as defined in RFC 3588.

Basic usage consists of creating a representation of a locally implemented Diameter node and its capabilities with
start_service/2, adding transport capability using add_transport/2 and sending Diameter requests and receiving
Diameter answers with call/4. Incoming Diameter requests are communicated as callbacks to a diameter_app(3)
callback modules as specified in the service configuration.

Beware the difference between diameter (not capitalised) and Diameter (capitalised). The former refers to the Erlang
application named diameter whose main api is defined here, the latter to Diameter protocol in the sense of RFC 3588.

The diameter application must be started before calling most functions in this module.

DATA TYPES
Address()
DiameterIdentity()
Grouped()
OctetString()
Time()
Unsigned32()
UTF8String()

Types corresponding to RFC 3588 AVP Data Formats. Defined in diameter_dict(4).

application_alias() = term()

A name identifying a Diameter application in service configuration. Passed to call/4 when sending requests
defined by the application.

application_module() = Mod | [Mod | ExtraArgs] | #diameter_callback{}

Mod = atom()
ExtraArgs = list()

A module implementing the callback interface defined in diameter_app(3), along with any extra arguments to be
appended to those documented for the interface. Note that extra arguments specific to an outgoing request can be
specified to call/4, in which case those are are appended to any module-specific extra arguments.

Specifying a #diameter_callback{} record allows individual functions to be configured in place of the
usual diameter_app(3) callbacks. See that module for details.

application_opt()

Options defining a Diameter application. Has one the following types.

{alias, application_alias()}

An unique identifier for the application in the scope of the service. Defaults to the value of the dictionary
option if unspecified.

diameter

6 | Ericsson AB. All Rights Reserved.: Diameter

{dictionary, atom()}

The name of an encode/decode module for the Diameter messages defined by the application. These modules are
generated from a specification file whose format is documented in diameter_dict(4).

{module, application_module()}

The callback module with which messages of the Diameter application are handled. See diameter_app(3) for the
required interface and semantics.

{state, term()}

The initial callback state. The prevailing state is passed to some diameter_app(3) callbacks, which can then return
a new state. Defaults to the value of the alias option if unspecified.

{call_mutates_state, true|false}

Specifies whether or not the pick_peer/4 application callback can modify the application state, Defaults to false
if unspecified.

Note:
pick_peer callbacks are serialized when these are allowed to modify state, which is a potential performance
bottleneck. A simple Diameter client may suffer no ill effects from using mutable state but a server or agent
that responds to incoming request should probably avoid it.

{answer_errors, callback|report|discard}

Determines the manner in which incoming answer messages containing decode errors are handled. If callback
then errors result in a handle_answer/4 callback in the same fashion as for handle_request/3, with errors
communicated in the errors field of the #diameter_packet{} record passed to the callback. If report
then an answer containing errors is discarded without a callback and a warning report is written to the log. If
discard then an answer containing errors is silently discarded without a callback. In both the report and
discard cases the return value for the call/4 invocation in question is as if a callback had taken place and
returned {error, failure}.

Defaults to report if unspecified.

call_opt()

Options available to call/4 when sending an outgoing Diameter request. Has one of the following types.

{extra, list()}

Extra arguments to append to callbacks to the callback module in question. These are appended to any extra
arguments configured on the callback itself. Multiple options append to the argument list.

{filter, peer_filter()}

A filter to apply to the list of available peers before passing them to the pick_peer/4 callback for the application in
question. Multiple options are equivalent a single all filter on the corresponding list of filters. Defaults to none.

{timeout, Unsigned32()}

The number of milliseconds after which the request should timeout. Defaults to 5000.

detach

Causes call/4 to return ok as soon as the request in question has been encoded instead of waiting for and returning
the result from a subsequent handle_answer/4 or handle_error/4 callback.

An invalid option will cause call/4 to fail.

diameter

Ericsson AB. All Rights Reserved.: Diameter | 7

capability()

AVP values sent in outgoing CER or CEA messages during capabilities exchange. Can be configured both on
a service and a transport, values specified on the latter taking precedence over any specified on the former. Has
one of the following types.

{'Origin-Host', DiameterIdentity()}
{'Origin-Realm', DiameterIdentity()}
{'Host-IP-Address', [Address()]}

An address list is available to the start function of a transport module, which can return a new list for use in
the subsequent CER or CEA. Host-IP-Address need not be specified if the transport start function returns an
address list.

{'Vendor-Id', Unsigned32()}
{'Product-Name', UTF8String()}
{'Origin-State-Id', Unsigned32()}

Origin-State-Id is optional but will be included in outgoing messages sent by diameter itself: CER/CEA, DWR/
DWA and DPR/DPA. Setting a value of 0 (zero) is equivalent to not setting a value as documented in RFC 3588.
The function origin_state_id/0 can be used as to retrieve a value that is computed when the diameter application
is started.

{'Supported-Vendor-Id', [Unsigned32()]}
{'Auth-Application-Id', [Unsigned32()]}
{'Inband-Security-Id', [Unsigned32()]}

Inband-Security-Id defaults to the empty list, which is equivalent to a list containing only 0 (=
NO_INBAND_SECURITY). If 1 (= TLS) is specified then TLS is selected if the CER/CEA received from the
peer offers it.

{'Acct-Application-Id', [Unsigned32()]}
{'Vendor-Specific-Application-Id', [Grouped()]}
{'Firmware-Revision', Unsigned32()}

Note that each tuple communicates one or more AVP values. It is an error to specify duplicate tuples.

evaluable() = {M,F,A} | fun() | [evaluable() | A]

An expression that can be evaluated as a function in the following sense.

eval([{M,F,A} | T]) ->
 apply(M, F, T ++ A);
eval([[F|A] | T]) ->
 eval([F | T ++ A]);
eval([F|A]) ->
 apply(F, A);
eval(F) ->
 eval([F]).

Applying an evaluable() E to an argument list A is meant in the sense of eval([E|A]).

Warning:
Beware of using fun expressions of the form fun Name/Arity (not fun Mod:Name/Arity) in situations
in which the fun is not short-lived and code is to be upgraded at runtime since any processes retaining such
a fun will have a reference to old code.

diameter

8 | Ericsson AB. All Rights Reserved.: Diameter

peer_filter() = term()

A filter passed to call/4 in order to select candidate peers for a pick_peer/4 callback. Has one of the following
types.

none

Matches any peer. This is a convenience that provides a filter equivalent to no filter at all.

host

Matches only those peers whose Origin-Host has the same value as Destination-Host in the outgoing
request in question, or any peer if the request does not contain a Destination-Host AVP.

realm

Matches only those peers whose Origin-Realm has the same value as Destination-Realm in the
outgoing request in question, or any peer if the request does not contain a Destination-Realm AVP.

{host, any|DiameterIdentity()}

Matches only those peers whose Origin-Host has the specified value, or all peers if the atom any.

{realm, any|DiameterIdentity()

Matches only those peers whose Origin-Realm has the specified value, or all peers if the atom any.

{eval, evaluable()}

Matches only those peers for which the specified evaluable() returns true on the connection's
diameter_caps record. Any other return value or exception is equivalent to false.

{neg, peer_filter()}

Matches only those peers not matched by the specified filter.

{all, [peer_filter()]}

Matches only those peers matched by each filter in the specified list.

{any, [peer_filter()]}

Matches only those peers matched by at least one filter in the specified list.

An invalid filter is equivalent to {any,[]}, a filter that matches no peer.

Note:
The host and realm filters examine the outgoing request as passed to call/4, assuming that this is a record-
or list-valued diameter_app:message(), and that the message contains at most one of each AVP. If
this is not the case then the {host|realm, DiameterIdentity()} filters must be used to achieve
the desired result. An empty DiameterIdentity() (which should not be typical) matches all hosts/
realms for the purposes of filtering.

Warning:
A host filter is not typically desirable when setting Destination-Host since it will remove peer agents from
the candidates list.

diameter

Ericsson AB. All Rights Reserved.: Diameter | 9

service_event() = #diameter_event{}

An event message sent to processes that have subscribed to these using subscribe/1.

The info field of the event record can have one of the following types.

{up, Ref, Peer, Config, Pkt}
{up, Ref, Peer, Config}
{down, Ref, Peer, Config}

Ref =
Peer =
Config = {connect|listen, []}
Pkt = #diameter_packet{}

The RFC 3539 watchdog state machine has transitioned into (up) or out of (down) the OKAY state. If a
#diameter_packet{} record is present in an up event then there has been a capabilties exchange on a newly
established transport connection and the record contains the received CER or CEA. Otherwise a connection has
reestablished without the loss or connectivity.

Note that a single up/down event for a given peer corresponds to one peer_up/peer_down callback for each of
the Diameter applications negotiated during capablilities exchange. That is, the event communicates connectivity
with the peer as a whole while the callbacks communicate connectivity with respect to individual Diameter
applications.

{reconnect, Ref, Opts}

Ref =
Opts = []

A connecting transport is attempting to establish/reestablish a transport connection with a peer following
reconnect_timer or watchdog_timer expiry.

{closed, Ref, Reason, Config}

Ref =
Config = {connect|listen, []}

Capabilities exchange has failed. Reason can have one of the following types.

{'CER', Result, Caps, Pkt}

Result = ResultCode | {capabilities_cb, CB, ResultCode|discard}
Caps = #diameter_caps{}
Pkt = #diameter_packet{}
ResultCode = integer()
CB =

An incoming CER has been answered with the indicated result code or discarded. Caps contains pairs of values
for the the local node and remote peer. Pkt contains the CER in question. In the case of rejection by a capabilities
callback, the tuple contains the rejecting callback.

diameter

10 | Ericsson AB. All Rights Reserved.: Diameter

{'CER', Caps, {ResultCode, Pkt}}

ResultCode = integer()
Caps = #diameter_caps{}
Pkt = #diameter_packet{}

An incoming CER contained errors and has been answered with the indicated result code. Caps contains only
values for the the local node. Pkt contains the CER in question.

{'CEA', Result, Caps, Pkt}

Result = integer() | atom() | {capabilities_cb, CB, ResultCode|discard}
Caps = #diameter_caps{}
Pkt = #diameter_packet{}
ResultCode = integer()

An incoming CEA has been rejected for the indicated reason. An integer-valued Result indicates the result
code sent by the peer. Caps contains pairs of values for the the local node and remote peer. Pkt contains the
CEA in question. In the case of rejection by a capabilities callback, the tuple contains the rejecting callback.

{'CEA', Caps, Pkt}

Caps = #diameter_caps{}
Pkt = #diameter_packet{}

An incoming CEA contained errors and has been rejected. Caps contains only values for the the local node. Pkt
contains the CEA in question.

{watchdog, Ref, PeerRef, {From, To}, Config}

Ref =
PeerRef =
From, To = initial | okay | suspect | down | reopen
Config = {connect|listen, [transport_opt()]}

An RFC 3539 watchdog state machine has changed state.

For forward compatibility, a subscriber should be prepared to receive info fields of forms other than the above.

service_name() = term()

The name of a service as passed to start_service/2 and with which the service is identified. There can be at most
one service with a given name on a given node. Note that erlang:make_ref/0 can be used to generate a service
name that is somewhat unique.

service_opt()

An option passed to start_service/2. Can be any capability() as well as the following.

{application, [application_opt()]}

Defines a Diameter application supported by the service.

A service must configure one application for each Diameter application it intends to support. For an outgoing
Diameter request, the relevant application_alias() is passed to call/4, while for an incoming request

diameter

Ericsson AB. All Rights Reserved.: Diameter | 11

the application identifier in the message header determines the application, the identifier being specified in the
application's dictionary file.

transport_opt()

An option passed to add_transport/2. Has one of the following types.

{transport_module, atom()}

A module implementing a transport process as defined in diameter_transport(3). Defaults to diameter_tcp
if unspecified.

Multiple transport_module and transport_config options are allowed. The order of these is
significant in this case (and only in this case), a transport_module being paired with the first
transport_config following it in the options list, or the default value for trailing modules. Transport starts
will be attempted with each of the modules in order until one establishes a connection within the corresponding
timeout (see below) or all fail.

{transport_config, term()}
{transport_config, term(), Unsigned32()}

A term passed as the third argument to the start/3 function of the relevant transport_module in order to
start a transport process. Defaults to the empty list if unspecified.

The 3-tuple form additionally specifies an interval, in milliseconds, after which a started transport process should
be terminated if it has not yet established a connection. For example, the following options on a connecting
transport request a connection with one peer over SCTP or another (typically the same) over TCP.

{transport_module, diameter_sctp}
{transport_config, SctpOpts, 5000}
{transport_module, diameter_tcp}
{transport_config, TcpOpts}

To listen on both SCTP and TCP, define one transport for each.

{applications, [application_alias()]}

The list of Diameter applications to which the transport should be restricted. Defaults to all applications configured
on the service in question. Applications not configured on the service in question are ignored.

{capabilities, [capability()]}

AVP's used to construct outgoing CER/CEA messages. Values take precedence over any specified on the service
in question.

Specifying a capability as a transport option may be particularly appropriate for Inband-Security-Id, in case TLS
is desired over TCP as implemented by diameter_tcp(3).

{capabilities_cb, evaluable()}

A callback invoked upon reception of CER/CEA during capabilities exchange in order to ask whether or not the
connection should be accepted. Applied to the relevant transport_ref() and the #diameter_caps{}
record of the connection. Returning ok accepts the connection. Returning integer() causes an incoming CER
to be answered with the specified Result-Code. Returning discard causes an incoming CER to be discarded.
Returning unknown is equivalent to returning 3010, DIAMETER_UNKNOWN_PEER. Returning anything
but ok or a 2xxx series result code causes the transport connection to be broken.

Multiple capabilities_cb options can be specified, in which case the corresponding callbacks are applied
until either all return ok or one does not.

diameter

12 | Ericsson AB. All Rights Reserved.: Diameter

{watchdog_timer, TwInit}

TwInit =
 | {M,F,A}

The RFC 3539 watchdog timer. An integer value is interpreted as the RFC's TwInit in milliseconds, a jitter of ±
2 seconds being added at each rearming of the timer to compute the RFC's Tw. An MFA is expected to return the
RFC's Tw directly, with jitter applied, allowing the jitter calculation to be performed by the callback.

An integer value must be at least 6000 as required by RFC 3539. Defaults to 30000 if unspecified.

{reconnect_timer, Tc}

Tc =

For a connecting transport, the RFC 3588 Tc timer, in milliseconds. Note that this timer determines the frequency
with which a transport will attempt to establish a connection with its peer only before an initial connection is
established: once there is an initial connection it's watchdog_timer that determines the frequency of reconnection
attempts, as required by RFC 3539.

For a listening transport, the timer specifies the time after which a previously connected peer will be forgotten:
a connection after this time is regarded as an initial connection rather than a reestablishment, causing the RFC
3539 state machine to pass to state OPEN rather than REOPEN. Note that these semantics are not goverened by
the RFC and that a listening transport's reconnect_timer should be greater than its peer's Tw plus jitter.

Defaults to 30000 for a connecting transport and 60000 for a listening transport.

Unrecognized options are silently ignored but are returned unmodified by service_info/2 and can be referred to
in predicate functions passed to remove_transport/2.

transport_ref() = reference()

An reference returned by add_transport/2 that identifies the configuration.

Exports

add_transport(SvcName, {connect|listen, [Opt]}) -> {ok, Ref} | {error,
Reason}

Types:

SvcName = service_name()

Opt = transport_opt()

Ref = transport_ref()

Reason = term()

Add transport capability to a service.

The service will start transport processes as required in order to establish a connection with the peer, either by
connecting to the peer (connect) or by accepting incoming connection requests (listen). A connecting transport
establishes transport connections with at most one peer, an listening transport potentially with many.

The diameter application takes responsibility for exchanging CER/CEA with the peer. Upon successful completion of
capabilities exchange the service calls each relevant application module's peer_up/3 callback after which the caller can
exchange Diameter messages with the peer over the transport. In addition to CER/CEA, the service takes responsibility
for the handling of DWR/DWA and required by RFC 3539, as well as for DPR/DPA.

diameter

Ericsson AB. All Rights Reserved.: Diameter | 13

The returned reference uniquely identifies the transport within the scope of the service. Note that the function returns
before a transport connection has been established.

Note:
It is not an error to add a transport to a service that has not yet been configured: a service can be started after
configuring its transports.

call(SvcName, App, Request, [Opt]) -> Answer | ok | {error, Reason}

Types:

SvcName = service_name()

App = application_alias()

Request = diameter_app:message()

Answer = term()

Opt = call_opt()

Send a Diameter request message.

App specifies the Diameter application in which the request is defined and callbacks to the corresponding callback
module will follow as described below and in diameter_app(3). Unless the detach option is specified, the call
returns either when an answer message is received from the peer or an error occurs. In the answer case, the return
value is as returned by a handle_answer/4 callback. In the error case, whether or not the error is returned directly by
diameter or from a handle_error/4 callback depends on whether or not the outgoing request is successfully encoded
for transmission to the peer, the cases being documented below.

If there are no suitable peers, or if pick_peer/4 rejects them by returning false, then {error,no_connection}
is returned. Otherwise pick_peer/4 is followed by a prepare_request/3 callback, the message is encoded and then sent.

There are several error cases which may prevent an answer from being received and passed to a handle_answer/4
callback:

• If the initial encode of the outgoing request fails, then the request process fails and {error,encode} is
returned.

• If the request is successfully encoded and sent but the answer times out then a handle_error/4 callback takes place
with Reason = timeout.

• If the request is successfully encoded and sent but the service in question is stopped before an answer is received
then a handle_error/4 callback takes place with Reason = cancel.

• If the transport connection with the peer goes down after the request has been sent but before an answer has been
received then an attempt is made to resend the request to an alternate peer. If no such peer is available, or if the
subsequent pick_peer/4 callback rejects the candidates, then a handle_error/4 callback takes place with Reason
= failover. If a peer is selected then a prepare_retransmit/3 callback takes place, after which the semantics
are the same as following an initial prepare_request/3 callback.

• If an encode error takes place during retransmission then the request process fails and {error,failure} is
returned.

• If an application callback made in processing the request fails (pick_peer, prepare_request, prepare_retransmit,
handle_answer or handle_error) then either {error,encode} or {error,failure} is returned depending
on whether or not there has been an attempt to send the request over the transport.

Note that {error,encode} is the only return value which guarantees that the request has not been sent over the
transport connection.

diameter

14 | Ericsson AB. All Rights Reserved.: Diameter

origin_state_id() -> Unsigned32()

Return a reasonable value for use as Origin-State-Id in outgoing messages.

The value returned is the number of seconds since 19680120T031408Z, the first value that can be encoded as a
Diameter Time(), at the time the diameter application was started.

remove_transport(SvcName, Pred) -> ok

Types:

SvcName = service_name()

Pred = Fun | MFA | transport_ref() | list() | true | false
Fun = fun((transport_ref(), connect|listen, list()) -> boolean())

 | fun((transport_ref(), list()) -> boolean())

 | fun((list()) -> boolean())

MFA = {atom(), atom(), list()}

Remove previously added transports.

Pred determines which transports to remove. An arity-3-valued Pred removes all transports for which Pred(Ref,
Type, Opts) returns true, where Type and Opts are as passed to add_transport/2 and Ref is as returned by
it. The remaining forms are equivalent to an arity-3 fun as follows.

Pred = fun(transport_ref(), list()): fun(Ref, _, Opts) -> Pred(Ref, Opts) end
Pred = fun(list()): fun(_, _, Opts) -> Pred(Opts) end
Pred = transport_ref(): fun(Ref, _, _) -> Pred == Ref end
Pred = list(): fun(_, _, Opts) -> [] == Pred -- Opts end
Pred = true: fun(_, _, _) -> true end
Pred = false: fun(_, _, _) -> false end
Pred = {M,F,A}: fun(Ref, Type, Opts) -> apply(M, F, [Ref, Type, Opts | A]) end

Removing a transport causes all associated transport connections to be broken. A DPR message with Disconnect-
Cause DO_NOT_WANT_TO_TALK_TO_YOU will be sent to each connected peer before disassociating the transport
configuration from the service and terminating the transport upon reception of DPA or timeout.

service_info(SvcName, Info) -> term()

Types:

SvcName = service_name()

Info = Item | [Info]

Item = atom()

Return information about a started service. Item can be one of the following.

diameter

Ericsson AB. All Rights Reserved.: Diameter | 15

'Origin-Host'
'Origin-Realm'
'Vendor-Id'
'Product-Name'
'Origin-State-Id'
'Host-IP-Address'
'Supported-Vendor'
'Auth-Application-Id'
'Inband-Security-Id'
'Acct-Application-Id'
'Vendor-Specific-Application-Id'
'Firmware-Revision'

Return a capability value as configured with start_service/2.

applications

Return the list of applications as configured with start_service/2.

capabilities

Return a tagged list of all capabilities values as configured with start_service/2.

transport

Return a list containing one entry for each of the service's transport as configured with add_transport/2. Each entry
is a tagged list containing both configuration and information about established peer connections. An example
return value with for a client service with Origin-Host "client.example.com" configured with a single transport
connected to "server.example.com" might look as follows.

[[{ref,#Ref<0.0.0.93>},
 {type,connect},
 {options,[{transport_module,diameter_tcp},
 {transport_config,[{ip,{127,0,0,1}},
 {raddr,{127,0,0,1}},
 {rport,3868},
 {reuseaddr,true}]}]},
 {watchdog,{<0.66.0>,{1346,171491,996448},okay}},
 {peer,{<0.67.0>,{1346,171491,999906}}},
 {apps,[{0,common}]},
 {caps,[{origin_host,{"client.example.com","server.example.com"}},
 {origin_realm,{"example.com","example.com"}},
 {host_ip_address,{[{127,0,0,1}],[{127,0,0,1}]}},
 {vendor_id,{0,193}},
 {product_name,{"Client","Server"}},
 {origin_state_id,{[],[]}},
 {supported_vendor_id,{[],[]}},
 {auth_application_id,{[0],[0]}},
 {inband_security_id,{[],[0]}},
 {acct_application_id,{[],[]}},
 {vendor_specific_application_id,{[],[]}},
 {firmware_revision,{[],[]}},
 {avp,{[],[]}}]},
 {port,[{owner,<0.69.0>},
 {module,diameter_tcp},
 {socket,{{127,0,0,1},48758}},
 {peer,{{127,0,0,1},3868}},
 {statistics,[{recv_oct,656},
 {recv_cnt,6},
 {recv_max,148},
 {recv_avg,109},

diameter

16 | Ericsson AB. All Rights Reserved.: Diameter

 {recv_dvi,19},
 {send_oct,836},
 {send_cnt,6},
 {send_max,184},
 {send_avg,139},
 {send_pend,0}]}]},
 {statistics,[{{{0,258,0},recv},3},
 {{{0,258,1},send},3},
 {{{0,257,0},recv},1},
 {{{0,257,1},send},1},
 {{{0,258,0},recv,{'Result-Code',2001}},3},
 {{{0,280,1},recv},2},
 {{{0,280,0},send},2}]}]]

Here ref is a transport_ref() and options the corresponding transport_opt() list passed to
add_transport/2. The watchdog entry shows the state of a connection's RFC 3539 watchdog state machine. The
peer entry identifies the diameter_app:peer_ref() for which there will have been peer_up callbacks
for the Diameter applications identified by the apps entry, common being the application_alias().
The caps entry identifies the capabilities sent by the local node and received from the peer during capabilities
exchange. The port entry displays socket-level information about the transport connection. The statistics
entry presents Diameter-level counters, an entry like {{{0,280,1},recv},2} saying that the client has
received 2 DWR messages: {0,280,1} = {Application_Id, Command_Code, R_Flag}.

Note that watchdog, peer, apps, caps and port entries depend on connectivity with the peer and may
not be present. Note also that the statistics entry presents values acuumulated during the lifetime of the
transport configuration.

A listening transport presents its information slightly differently since there may be multiple accepted connections
for the same transport_ref(). The transport info returned by a server with a single client connection
might look as follows.

[[{ref,#Ref<0.0.0.61>},
 {type,listen},
 {options,[{transport_module,diameter_tcp},
 {transport_config,[{reuseaddr,true},
 {ip,{127,0,0,1}},
 {port,3868}]}]},
 {accept,[[{watchdog,{<0.56.0>,{1346,171481,226895},okay}},
 {peer,{<0.58.0>,{1346,171491,999511}}},
 {apps,[{0,common}]},
 {caps,[{origin_host,{"server.example.com","client.example.com"}},
 {origin_realm,{"example.com","example.com"}},
 {host_ip_address,{[{127,0,0,1}],[{127,0,0,1}]}},
 {vendor_id,{193,0}},
 {product_name,{"Server","Client"}},
 {origin_state_id,{[],[]}},
 {supported_vendor_id,{[],[]}},
 {auth_application_id,{[0],[0]}},
 {inband_security_id,{[],[]}},
 {acct_application_id,{[],[]}},
 {vendor_specific_application_id,{[],[]}},
 {firmware_revision,{[],[]}},
 {avp,{[],[]}}]},
 {port,[{owner,<0.62.0>},
 {module,diameter_tcp},
 {socket,{{127,0,0,1},3868}},
 {peer,{{127,0,0,1},48758}},
 {statistics,[{recv_oct,1576},
 {recv_cnt,16},
 {recv_max,184},

diameter

Ericsson AB. All Rights Reserved.: Diameter | 17

 {recv_avg,98},
 {recv_dvi,26},
 {send_oct,1396},
 {send_cnt,16},
 {send_max,148},
 {send_avg,87},
 {send_pend,0}]}]}],
 [{watchdog,{<0.72.0>,{1346,171491,998404},initial}}]]},
 {statistics,[{{{0,280,0},recv},7},
 {{{0,280,1},send},7},
 {{{0,258,0},send,{'Result-Code',2001}},3},
 {{{0,258,1},recv},3},
 {{{0,258,0},send},3},
 {{{0,280,1},recv},5},
 {{{0,280,0},send},5},
 {{{0,257,1},recv},1},
 {{{0,257,0},send},1}]}]]

The information presented here is as in the connect case except that the client connections are grouped under
an accept tuple.

connections

Return a list containing one entry for every established transport connection whose watchdog state machine is
not in the down state. This is a flat view of transport info which lists only active connections and for which
Diameter-level statistics are accumulated only for the lifetime of the transport connection. A return value for the
server above might look as follows.

[[{ref,#Ref<0.0.0.61>},
 {type,accept},
 {options,[{transport_module,diameter_tcp},
 {transport_config,[{reuseaddr,true},
 {ip,{127,0,0,1}},
 {port,3868}]}]},
 {watchdog,{<0.56.0>,{1346,171481,226895},okay}},
 {peer,{<0.58.0>,{1346,171491,999511}}},
 {apps,[{0,common}]},
 {caps,[{origin_host,{"server.example.com","client.example.com"}},
 {origin_realm,{"example.com","example.com"}},
 {host_ip_address,{[{127,0,0,1}],[{127,0,0,1}]}},
 {vendor_id,{193,0}},
 {product_name,{"Server","Client"}},
 {origin_state_id,{[],[]}},
 {supported_vendor_id,{[],[]}},
 {auth_application_id,{[0],[0]}},
 {inband_security_id,{[],[]}},
 {acct_application_id,{[],[]}},
 {vendor_specific_application_id,{[],[]}},
 {firmware_revision,{[],[]}},
 {avp,{[],[]}}]},
 {port,[{owner,<0.62.0>},
 {module,diameter_tcp},
 {socket,{{127,0,0,1},3868}},
 {peer,{{127,0,0,1},48758}},
 {statistics,[{recv_oct,10124},
 {recv_cnt,132},
 {recv_max,184},
 {recv_avg,76},
 {recv_dvi,9},
 {send_oct,10016},
 {send_cnt,132},
 {send_max,148},

diameter

18 | Ericsson AB. All Rights Reserved.: Diameter

 {send_avg,75},
 {send_pend,0}]}]},
 {statistics,[{{{0,280,0},recv},62},
 {{{0,280,1},send},62},
 {{{0,258,0},send,{'Result-Code',2001}},3},
 {{{0,258,1},recv},3},
 {{{0,258,0},send},3},
 {{{0,280,1},recv},66},
 {{{0,280,0},send},66},
 {{{0,257,1},recv},1},
 {{{0,257,0},send},1}]}]]

Note that there may be multiple entries with the same ref, in contrast to transport info.

statistics

Return a {{Counter, Ref}, non_neg_integer()} list of counter values. Ref can be either a
transport_ref() or a diameter_app:peer_ref(). Entries for the latter are folded into corresponding
entries for the former as peer connections go down. Entries for both are removed at remove_transport/2. The
Diameter-level statistics returned by transport and connections info are based upon these entries.

Requesting info for an unknown service causes undefined to be returned. Requesting a list of items causes a tagged
list to be returned.

services() -> [SvcName]

Types:

SvcName = service_name()

Return the list of started services.

session_id(Ident) -> OctetString()

Types:

Ident = DiameterIdentity()

Return a value for a Session-Id AVP.

The value has the form required by section 8.8 of RFC 3588. Ident should be the Origin-Host of the peer from which
the message containing the returned value will be sent.

start() -> ok | {error, Reason}

Start the diameter application.

The diameter application must be started before starting a service. In a production system this is typically accomplished
by a boot file, not by calling start/0 explicitly.

start_service(SvcName, Options) -> ok | {error, Reason}

Types:

SvcName = service_name()

Options = [service_opt()]

Reason = term()

Start a diameter service.

A service defines a locally-implemented Diameter node, specifying the capabilities to be advertised during capabilities
exchange. Transports are added to a service using add_transport/2.

diameter

Ericsson AB. All Rights Reserved.: Diameter | 19

Note:
A transport can both override its service's capabilities and restrict its supported Diameter applications so "service
= Diameter node as identified by Origin-Host" is not necessarily the case.

stop() -> ok | {error, Reason}

Stop the diameter application.

stop_service(SvcName) -> ok | {error, Reason}

Types:

SvcName = service_name()

Reason = term()

Stop a diameter service.

Stopping a service causes all associated transport connections to be broken. A DPR message with be sent as in the
case of remove_transport/2.

Note:
Stopping a transport does not remove any associated transports: remove_transport/2 must be called to remove
transport configuration.

subscribe(SvcName) -> true

Types:

SvcName = service_name()

Subscribe to service_event() messages from a service.

It is not an error to subscribe to events from a service that does not yet exist. Doing so before adding transports is
required to guarantee the reception of all related events.

unsubscribe(SvcName) -> true

Types:

SvcName = service_name()

Unsubscribe to event messages from a service.

SEE ALSO
diameter_app(3), diameter_transport(3), diameter_dict(4)

diameterc

20 | Ericsson AB. All Rights Reserved.: Diameter

diameterc
Command

The diameterc utility is used to compile diameter dictionary files into Erlang source. The resulting source implements
the interface diameter requires to encode and decode the dictionary's messages and AVP's.

USAGE
diameterc [<options>] <file>

Compiles a single dictionary file. Valid options are as follows.

-o <dir>

Specifies the directory into which the generated source should be written. Defaults to the current working
directory.

-i <dir>

Specifies a directory to add to the code path. Use to point at beam files compiled from inherited dictionaries,
@inherits in a dictionary file creating a beam dependency, not an erl/hrl dependency.

Multiple -i options can be specified.

-E
-H

Supresses erl and hrl generation, respectively.

--name <name>
--prefix <prefix>

Set @name and @prefix in the dictionary, respectively. Overrides any setting in the file itself.

--inherits <dict>

Append an @inherits to the dictionary before compiling. Specifying '-' as the dictionary has the effect of
clearing any previous inherits, causing them to be ignored.

Multiple --inherits options can be specified.

EXIT STATUS
Returns 0 on success, non-zero on failure.

SEE ALSO
diameter_dict(4)

diameter_app

Ericsson AB. All Rights Reserved.: Diameter | 21

diameter_app
Erlang module

A diameter service as started by diameter:start_service/2 configures one of more Diameter applications, each of whose
configuration specifies a callback that handles messages specific to the application. The messages and AVPs of the
application are defined in a dictionary file whose format is documented in diameter_dict(4) while the callback module
is documented here. The callback module implements the Diameter application-specific functionality of a service.

A callback module must export all of the functions documented below. The functions themselves are of three distinct
flavours:

• peer_up/3 and peer_down/3 signal the attainment or loss of connectivity with a Diameter peer.

• pick_peer/4, prepare_request/3, prepare_retransmit/3, handle_answer/4 and handle_error/4 are (or may be)
called as a consequence of a call to diameter:call/4 to send an outgoing Diameter request message.

• handle_request/3 is called in response to an incoming Diameter request message.

Note:
The arities given for the the callback functions here assume no extra arguments. All functions will also be passed
any extra arguments configured with the callback module itself when calling diameter:start_service/2 and, for
the call-specific callbacks, any extra arguments passed to diameter:call/4.

DATA TYPES
capabilities() = #diameter_caps{}

A record containing the identities of the local Diameter node and the remote Diameter peer having an established
transport connection, as well as the capabilities as determined by capabilities exchange. Each field of the record
is a 2-tuple consisting of values for the (local) host and (remote) peer. Optional or possibly multiple values are
encoded as lists of values, mandatory values as the bare value.

message() = record() | list()

The representation of a Diameter message as passed to diameter:call/4. The record representation is as outlined in
diameter_dict(4): a message as defined in a dictionary file is encoded as a record with one field for each component
AVP. Equivalently, a message can also be encoded as a list whose head is the atom-valued message name (the
record name minus any prefix specified in the relevant dictionary file) and whose tail is a list of {FieldName,
FieldValue} pairs.

A third representation allows a message to be specified as a list whose head is a #diameter_header{} record
and whose tail is a list of #diameter_avp{} records. This representation is used by diameter itself when
relaying requests as directed by the return value of a handle_request/3 callback. It differs from the other other two
in that it bypasses the checks for messages that do not agree with their definitions in the dictionary in question
(since relays agents must handle arbitrary request): messages are sent exactly as specified.

packet() = #diameter_packet{}

A container for incoming and outgoing Diameter messages that's passed through encode/decode and transport.
Fields should not be set in return values except as documented.

peer_ref() = term()

A term identifying a transport connection with a Diameter peer. Should be treated opaquely.

diameter_app

22 | Ericsson AB. All Rights Reserved.: Diameter

peer() = {peer_ref(), capabilities()}

A tuple representing a Diameter peer connection.

state() = term()

The state maintained by the application callback functions peer_up/3, peer_down/3 and (optionally) pick_peer/4.
The initial state is configured in the call to diameter:start_service/2 that configures the application on a service.
Callback functions returning a state are evaluated in a common service-specific process while those not returning
state are evaluated in a request-specific process.

Exports

Mod:peer_up(SvcName, Peer, State) -> NewState

Types:

SvcName = diameter:service_name()

Peer = peer()

State = NewState = state()

Invoked when a transport connection has been established and a successful capabilities exchange has indicated that
the peer supports the Diameter application of the application on which the callback module in question has been
configured.

Mod:peer_down(SvcName, Peer, State) -> NewState

Types:

SvcName = diameter:service_name()

Peer = peer()

State = NewState = state()

Invoked when a transport connection has been lost following a previous call to peer_up/3.

Mod:pick_peer(Candidates, Reserved, SvcName, State) -> {ok, Peer} | {Peer,
NewState} | false

Types:

Candidates = [peer()]

Peer = peer() | false

SvcName = diameter:service_name()

State = NewState = state()

Invoked as a consequence of a call to diameter:call/4 to select a destination peer for an outgoing request, the return
value indicating the selected peer.

The candidate peers list will only include those which are selected by any filter option specified in the call to
diameter:call/4, and only those which have indicated support for the Diameter application in question. The order of
the elements is unspecified except that any peers whose Origin-Host and Origin-Realm matches that of the outgoing
request (in the sense of a {filter, {all, [host, realm]}} option to diameter:call/4) will be placed at
the head of the list.

The return values false and {false, State} are equivalent when callback state is mutable, as are {ok, Peer}
and {Peer, State}. Returning a peer as false causes {error, no_connection} to be returned from
diameter:call/4. Returning a peer() from an initial pick_peer/4 callback will result in a prepare_request/3 callback
followed by either handle_answer/4 or handle_error/4 depending on whether or not an answer message is received

diameter_app

Ericsson AB. All Rights Reserved.: Diameter | 23

from the peer. If transport with the peer is lost before this then a new pick_peer/4 callback takes place to select an
alternate peer.

Note that there is no guarantee that a pick_peer/4 callback to select an alternate peer will be followed by any additional
callbacks, only that the initial pick_peer/4 will be, since a retransmission to an alternate peer is abandoned if an answer
is received from a previously selected peer.

Note:
{Peer, NewState} and its equivalents can only be returned if the Diameter application in question was
configured with the diameter:application_opt() {call_mutates_state, true}. Otherwise, the State
argument is always the intial value as configured on the application, not any subsequent value returned by a
peer_up/3 or peer_down/3 callback.

Mod:prepare_request(Packet, SvcName, Peer) -> Action

Types:

Packet = packet()

SvcName = diameter:service_name()

Peer = peer()

Action = {send, packet() | message()} | {discard, Reason} | discard

Invoked to return a request for encoding and transport. Allows the sender to access the selected peer's capabilities in
order to set (for example) Destination-Host and/or Destination-Realm in the outgoing request, although
the callback need not be limited to this usage. Many implementations may simply want to return {send, Packet}

A returned packet() should set the request to be encoded in its msg field and can set the transport_data
field in order to pass information to the transport module. Extra arguments passed to diameter:call/4 can be
used to communicate transport data to the callback. A returned packet() can also set the header field to a
#diameter_header{} record in order to specify values that should be preserved in the outgoing request, although
this should typically not be necessary and allows the callback to set header values inappropriately. A returned length,
cmd_code or application_id is ignored.

Returning {discard, Reason} causes the request to be aborted and the diameter:call/4 for which the callback
has taken place to return {error, Reason}. Returning discard is equivalent to returning {discard,
discarded}.

Mod:prepare_retransmit(Packet, SvcName, Peer) -> Result

Types:

Packet = packet()

SvcName = diameter:service_name()

Peer = peer()

Result = {send, packet() | message()} | {discard, Reason} | discard

Invoked to return a request for encoding and retransmission. Has the same role as prepare_request/3 in the case
that a peer connection is lost an an alternate peer selected but the argument packet() is as returned by the initial
prepare_request/3.

Returning {discard, Reason} causes the request to be aborted and a handle_error/4 callback to take place with
Reason as initial argument. Returning discard is equivalent to returning {discard, discarded}.

diameter_app

24 | Ericsson AB. All Rights Reserved.: Diameter

Mod:handle_answer(Packet, Request, SvcName, Peer) -> Result

Types:

Packet = packet()

Request = message()

SvcName = diameter:service_name()

Peer = peer()

Result = term()

Invoked when an answer message is received from a peer. The return value is returned from the call to diameter:call/4
for which the callback takes place unless the detach option was specified.

The decoded answer record is in the msg field of the argument packet(), the undecoded binary in the packet field.
Request is the outgoing request message as was returned from prepare_request/3 or prepare_retransmit/3 before
the request was passed to the transport.

For any given call to diameter:call/4 there is at most one call to the handle_answer callback of the application
in question: any duplicate answer (due to retransmission or otherwise) is discarded. Similarly, only one of
handle_answer/4 or handle_error/4 is called for any given request.

By default, an incoming answer message that cannot be successfully decoded causes the request process in question to
fail, causing the relevant call to diameter:call/4 to return {error, failure} (unless the detach option
was specified). In particular, there is no handle_error/4 callback in this case. Application configuration
may change this behaviour as described for diameter:start_service/2.

Mod:handle_error(Reason, Request, SvcName, Peer) -> Result

Types:

Reason = timeout | failover | term()

Request = message()

SvcName = diameter:service_name()

Peer = peer()

Result = term()

Invoked when an error occurs before an answer message is received from a peer in response to an outgoing request.
The return value is returned from the call to diameter:call/4 for which the callback takes place (unless the detach
option was specified).

Reason timeout indicates that an answer message has not been received within the required time. Reason
failover indicates that the transport connection to the peer to which the request has been sent has been lost but that
not alternate node was available, possibly because a pick_peer/4 callback returned false.

Mod:handle_request(Packet, SvcName, Peer) -> Action

Types:

Packet = packet()

SvcName = term()

Peer = peer()

Action = Reply | {relay, [Opt]} | discard | {eval, Action, PostF}

Reply = {reply, message()} | {protocol_error, 3000..3999}

Opt = diameter:call_opt()

PostF = diameter:evaluable()

diameter_app

Ericsson AB. All Rights Reserved.: Diameter | 25

Invoked when a request message is received from a peer. The application in which the callback takes place (that is,
the callback module as configured with diameter:start_service/2) is determined by the Application Identifier in the
header of the incoming request message, the selected module being the one whose corresponding dictionary declares
itself as defining either the application in question or the Relay application.

The argument packet() has the following signature.

#diameter_packet{header = #diameter_header{},
 avps = [#diameter_avp{}],
 msg = record() | undefined,
 errors = [| {, #diameter_avp{}}],
 bin = binary(),
 transport_data = term()}

The msg field will be undefined only in case the request has been received in the relay application. Otherwise it
contains the record representing the request as outlined in diameter_dict(4).

The errors field specifies any Result-Code's identifying errors that were encountered in decoding the request. In
this case diameter will set both Result-Code and Failed-AVP AVP's in a returned answer message() before sending it
to the peer: the returned message() need only set any other required AVP's. Note that the errors detected by diameter
are all of the 5xxx series (Permanent Failures). The errors list is empty if the request has been received in the relay
application.

The transport_data field contains an arbitrary term passed into diameter from the transport module in question,
or the atom undefined if the transport specified no data. The term is preserved in the packet() containing any answer
message sent back to the transport process unless another value is explicitly specified.

The semantics of each of the possible return values are as follows.

{reply, message()}

Send the specified answer message to the peer.

{protocol_error, 3000..3999}

Send an answer message to the peer containing the specified protocol error. Equivalent to

{reply, ['answer-message' | Avps]

where Avps sets the Origin-Host, Origin-Realm, the specified Result-Code and (if the request sent one) Session-
Id AVP's.

Note that RFC 3588 mandates that only answers with a 3xxx series Result-Code (protocol errors) may set the E
bit. Returning a non-3xxx value in a protocol_error tuple will cause the request process in question to fail.

{relay, Opts}

Relay a request to another peer in the role of a Diameter relay agent. If a routing loop is detected then the request
is answered with 3005 (DIAMETER_LOOP_DETECTED). Otherwise a Route-Record AVP (containing the
sending peer's Origin-Host) is added to the request and pick_peer/4 and subsequent callbacks take place just as
if diameter:call/4 had been called explicitly. The End-to-End Identifier of the incoming request is preserved in
the header of the relayed request.

The returned Opts should not specify detach. A subsequent handle_answer/4 callback for the relayed request
must return its first argument, the #diameter_packet{} record containing the answer message. Note that the
extra option can be specified to supply arguments that can distinguish the relay case from others if so desired.

diameter_app

26 | Ericsson AB. All Rights Reserved.: Diameter

Any other return value (for example, from a handle_error/4 callback) causes the request to be answered with
3002 (DIAMETER_UNABLE_TO_DELIVER).

discard

Discard the request.

{eval, Action, PostF}

Handle the request as if Action has been returned and then evaluate PostF in the request process.

Note that protocol errors detected by diameter will result in an answer message without handle_request/3 being
invoked.

diameter_dict

Ericsson AB. All Rights Reserved.: Diameter | 27

diameter_dict
Name

A diameter service as configured with diameter:start_service/2 specifies one or more supported Diameter applications.
Each Diameter application specifies a dictionary module that knows how to encode and decode its messages and AVPs.
The dictionary module is in turn generated from a file that defines these messages and AVPs. The format of such a
file is defined in FILE FORMAT below. Users add support for their specific applications by creating dictionary files,
compiling them to Erlang modules using diameterc and configuring the resulting dictionaries modules on a service.

The codec generation also results in a hrl file that defines records for the messages and grouped AVPs defined
for the application, these records being what a user of the diameter application sends and receives. (Modulo other
available formats as discussed in diameter_app(3).) These records and the underlying Erlang data types corresponding
to Diameter data formats are discussed in MESSAGE RECORDS and DATA TYPES respectively. The generated hrl
also contains defines for the possible values of AVPs of type Enumerated.

The diameter application includes three dictionary modules corresponding to applications defined in section 2.4 of
RFC 3588: diameter_gen_base_rfc3588 for the Diameter Common Messages application with application
identifier 0, diameter_gen_accounting for the Diameter Base Accounting application with application
identifier 3 and diameter_gen_relay the Relay application with application identifier 0xFFFFFFFF. The
Common Message and Relay applications are the only applications that diameter itself has any specific knowledge
of. The Common Message application is used for messages that diameter itself handles: CER/CEA, DWR/DWA and
DPR/DPA. The Relay application is given special treatment with regard to encode/decode since the messages and
AVPs it handles are not specifically defined.

FILE FORMAT
A dictionary file consists of distinct sections. Each section starts with a tag followed by zero or more arguments
and ends at the the start of the next section or end of file. Tags consist of an ampersand character followed by
a keyword and are separated from their arguments by whitespace. Whitespace separates individual tokens but is
otherwise insignificant.

The tags, their arguments and the contents of each corresponding section are as follows. Each section can occur multiple
times unless otherwise specified. The order in which sections are specified is unimportant.

@id Number

Defines the integer Number as the Diameter Application Id of the application in question. Can occur at most once
and is required if the dictionary defines @messages. The section has empty content.

The Application Id is set in the Diameter Header of outgoing messages of the application, and the value in the
header of an incoming message is used to identify the relevant dictionary module.

Example:

@id 16777231

@name Mod

Defines the name of the generated dictionary module. Can occur at most once and defaults to the name of the
dictionary file minus any extension if unspecified. The section has empty content.

Note that a dictionary module should have a unique name so as not collide with existing modules in the system.

Example:

diameter_dict

28 | Ericsson AB. All Rights Reserved.: Diameter

@name etsi_e2

@prefix Name

Defines Name as the prefix to be added to record and constant names (followed by a '_' character) in the
generated dictionary module and hrl. Can occur at most once. The section has empty content.

A prefix is optional but can be be used to disambiguate between record and constant names resulting from similarly
named messages and AVPs in different Diameter applications.

Example:

@prefix etsi_e2

@vendor Number Name

Defines the integer Number as the the default Vendor-Id of AVPs for which the V flag is set. Name documents
the owner of the application but is otherwise unused. Can occur at most once and is required if an AVP sets the
V flag and is not otherwise assigned a Vendor-Id. The section has empty content.

Example:

@vendor 13019 ETSI

@avp_vendor_id Number

Defines the integer Number as the Vendor-Id of the AVPs listed in the section content, overriding the @vendor
default. The section content consists of AVP names.

Example:

@avp_vendor_id 2937

WWW-Auth
Domain-Index
Region-Set

@inherits Mod

Defines the name of a dictionary module containing AVP definitions that should be imported into the current
dictionary. The section content consists of the names of those AVPs whose definitions should be imported from
the dictionary, an empty list causing all to be imported. Any listed AVPs must not be defined in the current
dictionary and it is an error to inherit the same AVP from more than one dictionary.

Note that an inherited AVP that sets the V flag takes its Vendor-Id from either @avp_vendor_id in the
inheriting dictionary or @vendor in the inherited dictionary. In particular, @avp_vendor_id in the inherited
dictionary is ignored. Inheriting from a dictionary that specifies the required @vendor is equivalent to using
@avp_vendor_id with a copy of the dictionary's definitions but the former makes for easier reuse.

All dictionaries should typically inherit RFC3588 AVPs from diameter_gen_base_rfc3588.

Example:

diameter_dict

Ericsson AB. All Rights Reserved.: Diameter | 29

@inherits diameter_gen_base_rfc3588

@avp_types

Defines the name, code, type and flags of individual AVPs. The section consists of definitions of the form

Name Code Type Flags

where Code is the integer AVP code, Type identifies an AVP Data Format as defined in DATA TYPES below,
and Flags is a string of V, M and P characters indicating the flags to be set on an outgoing AVP or a single '-'
(minus) character if none are to be set.

Example:

@avp_types

Location-Information 350 Grouped MV
Requested-Information 353 Enumerated V

Warning:
The P flag has been deprecated by the Diameter Maintenance and Extensions Working Group of the IETF
and should be omitted to conform to the current draft standard.

@custom_types Mod

Specifies AVPs for which module Mod provides encode/decode functions. The section contents consists of
AVP names. For each such name, Mod:Name(encode|decode, Type, Data) is expected to provide
encode/decode for values of the AVP, where Name is the name of the AVP, Type is it's type as declared in the
@avp_types section of the dictionary and Data is the value to encode/decode.

Example:

@custom_types rfc4005_avps

Framed-IP-Address

@codecs Mod

Like @custom_types but requires the specified module to export Mod:Type(encode|decode, Name,
Data) rather than Mod:Name(encode|decode, Type, Data).

Example:

@codecs rfc4005_avps

Framed-IP-Address

@messages

Defines the messages of the application. The section content consists of definitions of the form specified in section
3.2 of RFC 3588, "Command Code ABNF specification".

diameter_dict

30 | Ericsson AB. All Rights Reserved.: Diameter

@messages

RTR ::= < Diameter Header: 287, REQ, PXY >
 < Session-Id >
 { Auth-Application-Id }
 { Auth-Session-State }
 { Origin-Host }
 { Origin-Realm }
 { Destination-Host }
 { SIP-Deregistration-Reason }
 [Destination-Realm]
 [User-Name]
 * [SIP-AOR]
 * [Proxy-Info]
 * [Route-Record]
 * [AVP]

RTA ::= < Diameter Header: 287, PXY >
 < Session-Id >
 { Auth-Application-Id }
 { Result-Code }
 { Auth-Session-State }
 { Origin-Host }
 { Origin-Realm }
 [Authorization-Lifetime]
 [Auth-Grace-Period]
 [Redirect-Host]
 [Redirect-Host-Usage]
 [Redirect-Max-Cache-Time]
 * [Proxy-Info]
 * [Route-Record]
 * [AVP]

@grouped

Defines the contents of the AVPs of the application having type Grouped. The section content consists of
definitions of the form specified in section 4.4 of RFC 3588, "Grouped AVP Values".

Example:

@grouped

SIP-Deregistration-Reason ::= < AVP Header: 383 >
 { SIP-Reason-Code }
 [SIP-Reason-Info]
 * [AVP]

Specifying a Vendor-Id in the definition of a grouped AVP is equivalent to specifying it with
@avp_vendor_id.

@enum Name

Defines values of AVP Name having type Enumerated. Section content consists of names and corresponding
integer values. Integer values can be prefixed with 0x to be interpreted as hexidecimal.

Note that the AVP in question can be defined in an inherited dictionary in order to introduce additional values
to an enumeration otherwise defined in another dictionary.

Example:

diameter_dict

Ericsson AB. All Rights Reserved.: Diameter | 31

@enum SIP-Reason-Code

PERMANENT_TERMINATION 0
NEW_SIP_SERVER_ASSIGNED 1
SIP_SERVER_CHANGE 2
REMOVE_SIP_SERVER 3

@end

Causes parsing of the dictionary to terminate: any remaining content is ignored.

Comments can be included in a dictionary file using semicolon: characters from a semicolon to end of line are ignored.

MESSAGE RECORDS
The hrl generated from a dictionary specification defines records for the messages and grouped AVPs defined in
@messages and @grouped sections. For each message or grouped AVP definition, a record is defined whose name
is the message or AVP name prefixed with any dictionary prefix defined with @prefix and whose fields are the
names of the AVPs contained in the message or grouped AVP in the order specified in the definition in question. For
example, the grouped AVP

SIP-Deregistration-Reason ::= < AVP Header: 383 >
 { SIP-Reason-Code }
 [SIP-Reason-Info]
 * [AVP]

will result in the following record definition given an empty prefix.

-record('SIP-Deregistration-Reason' {'SIP-Reason-Code',
 'SIP-Reason-Info',
 'AVP'}).

The values encoded in the fields of generated records depends on the type and number of times the AVP can occur.
In particular, an AVP which is specified as occurring exactly once is encoded as a value of the AVP's type while an
AVP with any other specification is encoded as a list of values of the AVP's type. The AVP's type is as specified in
the AVP definition, the RFC 3588 types being described below.

DATA TYPES
The data formats defined in sections 4.2 ("Basic AVP Data Formats") and 4.3 ("Derived AVP Data Formats") of RFC
3588 are encoded as values of the types defined here. Values are passed to diameter:call/4 in a request record when
sending a request, returned in a resulting answer record and passed to a handle_request callback upon reception of
an incoming request.

Basic AVP Data Formats

OctetString() = [0..255]
Integer32() = -2147483647..2147483647
Integer64() = -9223372036854775807..9223372036854775807
Unsigned32() = 0..4294967295
Unsigned64() = 0..18446744073709551615
Float32() = '-infinity' | float() | infinity
Float64() = '-infinity' | float() | infinity

diameter_dict

32 | Ericsson AB. All Rights Reserved.: Diameter

Grouped() = record()

On encode, an OctetString() can be specified as an iolist(), excessively large floats (in absolute value) are equivalent
to infinity or '-infinity' and excessively large integers result in encode failure. The records for grouped
AVPs are as discussed in the previous section.

Derived AVP Data Formats

Address() = OctetString()
 | tuple()

On encode, an OctetString() IPv4 address is parsed in the usual x.x.x.x format while an IPv6 address is parsed in any
of the formats specified by section 2.2 of RFC 2373, "Text Representation of Addresses". An IPv4 tuple() has length
4 and contains values of type 0..255. An IPv6 tuple() has length 8 and contains values of type 0..65535. The tuple
representation is used on decode.

Time() = {date(), time()}

where

 date() = {Year, Month, Day}
 time() = {Hour, Minute, Second}

 Year = integer()
 Month = 1..12
 Day = 1..31
 Hour = 0..23
 Minute = 0..59
 Second = 0..59

Additionally, values that can be encoded are limited by way of their encoding as four octets as required by RFC 3588
with the required extension from RFC 2030. In particular, only values between {{1968,1,20},{3,14,8}} and
{{2104,2,26},{9,42,23}} (both inclusive) can be encoded.

UTF8String() = [integer()]

List elements are the UTF-8 encodings of the individual characters in the string. Invalid codepoints will result in
encode/decode failure.

DiameterIdentity() = OctetString()

A value must have length at least 1.

DiameterURI() = OctetString()
 | #diameter_URI{type = Type,
 fqdn = FQDN,
 port = Port,
 transport = Transport,
 protocol = Protocol}

diameter_dict

Ericsson AB. All Rights Reserved.: Diameter | 33

where

 Type = aaa | aaas
 FQDN = OctetString()
 Port = integer()
 Transport = sctp | tcp
 Protocol = diameter | radius | 'tacacs+'

On encode, fields port, transport and protocol default to 3868, sctp and diameter respectively. The grammar of an
OctetString-valued DiameterURI() is as specified in section 4.3 of RFC 3588. The record representation is used on
decode.

Enumerated() = Integer32()

On encode, values can be specified using the macros defined in a dictionary's hrl file.

IPFilterRule() = OctetString()
QoSFilterRule() = OctetString()

Values of these types are not currently parsed by diameter.

SEE ALSO
diameterc(1), diameter(3), diameter_app(3)

diameter_transport

34 | Ericsson AB. All Rights Reserved.: Diameter

diameter_transport
Erlang module

A module specified as a transport_module to diameter:add_transport/2 must implement the interface
documented here. The interface consists of a function with which diameter starts a transport process and a message
interface with which the transport process communicates with the process that starts it (aka its parent).

Exports

Mod:start({Type, Ref}, Svc, Opts) -> {ok, Pid} | {ok, Pid, LAddrs} | {error,
Reason}

Types:

Type = connect | accept

Ref = diameter:transport_ref()

Svc = #diameter_service{}

Opts = term()

Pid = pid()

LAddrs = [inet:ip_address()]

Reason = term()

Start a transport process. Called by diameter as a consequence of a call to diameter:add_transport/2 in order to establish
or accept a transport connection respectively. A transport process maintains a connection with a single remote peer.

The first argument indicates whether the transport process in question is being started for a connecting (connect)
or listening (accept) transport. In the latter case, transport processes are started as required to accept connections
from multiple peers. Ref is in each case the same value that was returned from the call to diameter:add_transport/2
that has lead to starting of a transport process.

A transport process must implement the message interface documented below. It should retain the pid of its parent,
monitor the parent and terminate if it dies. It should not link to the parent. It should exit if its transport connection
with its peer is lost.

The capabilities in the #diameter_service{} record are as passed to diameter:start_service/2 and
diameter:add_transport/2, values passed to the latter overriding those passed to the former. The start function should
use the Host-IP-Address list and/or Opts to select an appropriate list of local IP addresses, and should return
this list if different from the #diameter_service{} addresses. The returned list is used to populate Host-IP-
Address AVPs in outgoing capabilities exchange messages, the #diameter_service{} addresses being used
otherwise.

MESSAGES
All messages sent over the transport interface are of the form {diameter, term()}.

A transport process can expect the following messages from diameter.

{diameter, {send, Packet}}

An outbound Diameter message. Packet can be either binary() (the message to be sent) or a
#diameter_packet{} record whose transport_data field contains a value other than undefined and
whose bin field contains the binary to send.

diameter_transport

Ericsson AB. All Rights Reserved.: Diameter | 35

{diameter, {close, Pid}}

A request to close the transport connection. The transport process should terminate after closing the connection.
Pid is the pid() of the parent process.

{diameter, {tls, Ref, Type, Bool}}

Indication of whether or not capabilities exchange has selected inband security using TLS. Ref is a reference()
that must be included in the {diameter, {tls, Ref}} reply message to the transport's parent process (see
below). Type is either connect or accept depending on whether the process has been started for a connecting
or listening transport respectively. Bool is a boolean() indicating whether or not the transport connection should
be upgraded to TLS.

If TLS is requested (Bool=true) then a connecting process should initiate a TLS handshake with the peer and
an accepting process should prepare to accept a handshake. A successful handshake should be followed by a
{diameter, {tls, Ref}} message to the parent process. A failed handshake should cause the process
to exit.

This message is only sent to a transport process over whose Inband-Security-Id configuration has
indicated support for TLS.

A transport process should send the following messages to its parent.

{diameter, {self(), connected}}

Inform the parent that the transport process with Type=accept has established a connection with the peer. Not
sent if the transport process has Type=connect.

{diameter, {self(), connected, Remote}}

Inform the parent that the transport process with Type=connect has established a connection with a peer. Not
sent if the transport process has Type=accept. Remote is an arbitrary term that uniquely identifies the remote
endpoint to which the transport has connected.

{diameter, {recv, Packet}}

An inbound Diameter message. Packet can be either binary() (the received message) or a
#diameter_packet{} record whose bin field contains the received binary(). Any value (other than
undefined) set in the transport_data field will be passed back with a corresponding answer message in
the case that the inbound message is a request unless the sender sets another value. How transport_data
is used/interpreted is up to the transport module.

{diameter, {tls, Ref}}

Acknowledgment of a successful TLS handshake. Ref is the reference() received in the {diameter, {tls,
Ref, Type, Bool}} message in response to which the reply is sent. A transport must exit if a handshake
is not successful.

SEE ALSO
diameter_tcp(3), diameter_sctp(3)

diameter_tcp

36 | Ericsson AB. All Rights Reserved.: Diameter

diameter_tcp
Erlang module

This module implements diameter transport over TCP using gen_tcp. It can be specified as the value of
a transport_module option to diameter:add_transport/2 and implements the behaviour documented in
diameter_transport(3). TLS security is supported, both as an upgrade following capabilities exchange as specified by
RFC 3588 and at connection establishment as in the current draft standard.

Note that the ssl application is required for TLS and must be started before configuring TLS capability on diameter
transports.

Exports

start({Type, Ref}, Svc, [Opt]) -> {ok, Pid, [LAddr]} | {error, Reason}

Types:

Type = connect | accept

Ref = diameter:transport_ref()

Svc = #diameter_service{}

Opt = OwnOpt | SslOpt | TcpOpt

Pid = pid()

LAddr = inet:ip_address()

Reason = term()

OwnOpt = {raddr, inet:ip_address()} | {rport, integer()} | {port,
integer()}

SslOpt = {ssl_options, true | list()}

TcpOpt = term()

The start function required by diameter_transport(3).

The only diameter_tcp-specific argument is the options list. Options raddr and rport specify the remote address
and port for a connecting transport and are not valid for a listening transport. Option ssl_options must be
specified for a transport that should support TLS: a value of true results in a TLS handshake immediately upon
connection establishment while list() specifies options to be passed to ssl:connect/2 or ssl:ssl_accept/2 after
capabilities exchange if TLS is negotiated. Remaining options are any accepted by ssl:connect/3 or gen_tcp:connect/3
for a connecting transport, or ssl:listen/2 or gen_tcp:listen/2 for a listening transport, depending on whether or not
{ssl_options, true} has been specified. Options binary, packet and active cannot be specified. Also,
option port can be specified for a listening transport to specify the local listening port, the default being the
standardized 3868 if unspecified. Note that the option ip specifies the local address.

An ssl_options list must be specified if and only if the transport in question has set Inband-Security-Id to
1 (TLS), as specified to either start_service/2 or add_transport/2, so that the transport process will receive notification
of whether or not to commence with a TLS handshake following capabilities exchange. Failing to specify an options
list on a TLS-capable transport for which TLS is negotiated will cause TLS handshake to fail. Failing to specify TLS
capability when ssl_options has been specified will cause the transport process to wait for a notification that will
not be forthcoming, which will eventually cause the RFC 3539 watchdog to take down the connection.

If the #diameter_service{} record has more than one Host-IP-Address and option ip is unspecified then
the first of the these addresses is used as the local address.

The returned local address list has length one.

diameter_tcp

Ericsson AB. All Rights Reserved.: Diameter | 37

SEE ALSO
diameter(3), diameter_transport(3), gen_tcp(3), inet(3), ssl(3)

diameter_sctp

38 | Ericsson AB. All Rights Reserved.: Diameter

diameter_sctp
Erlang module

This module implements diameter transport over SCTP using gen_sctp. It can be specified as the value
of a transport_module option to diameter:add_transport/2 and implements the behaviour documented in
diameter_transport(3).

Exports

start({Type, Ref}, Svc, [Opt]) -> {ok, Pid, [LAddr]} | {error, Reason}

Types:

Type = connect | accept

Ref = diameter:transport_ref()

Svc = #diameter_service{}

Opt = {raddr, inet:ip_address()} | {rport, integer()} | term()

Pid = pid()

LAddr = inet:ip_address()

Reason = term()

The start function required by diameter_transport(3).

The only diameter_sctp-specific argument is the options list. Options raddr and rport specify the remote address
and port for a connecting transport and not valid for a listening transport: the former is required while latter defaults to
3868 if unspecified. More than one raddr option can be specified, in which case the connecting transport in question
attempts each in sequence until an association is established. Remaining options are any accepted by gen_sctp:open/1,
with the exception of options mode, binary, list, active and sctp_events. Note that options ip and port
specify the local address and port respectively.

Multiple ip options can be specified for a multihomed peer. If none are specified then the values of Host-IP-
Address in the #diameter_service{} record are used. (In particular, one of these must be specified.) Option
port defaults to 3868 for a listening transport and 0 for a connecting transport.

Warning:
An insufficiently large receive buffer may result in a peer having to resend incoming messages: set the inet(3)
option recbuf to increase the buffer size.

An insufficiently large send buffer may result in outgoing messages being discarded: set the inet(3) option
sndbuf to increase the buffer size.

diameter_sctp uses the transport_data field of the #diameter_packet{} record to communicate the stream
on which an inbound message has been received, or on which an outbound message should be sent: the value will
be of the form {stream, Id} on an inbound message passed to a handle_request or handle_answer callback. For
an outbound message, either undefined (explicitly or by receiving the outbound message as a binary()) or a
tuple should be set in the return value of handle_request (typically by retaining the value passed into this function)
or prepare_request. The value undefined uses a "next outbound stream" id and increments this modulo the total
number outbound streams. That is, successive values of undefined cycle through all outbound streams.

diameter_sctp

Ericsson AB. All Rights Reserved.: Diameter | 39

SEE ALSO
diameter_transport(3), gen_sctp(3), inet(3)

	Diameter
	Diameter Users Guide
	Introduction
	Usage
	Examples
	Standards Compliance
	RFC 3588
	RFC 3539

	Reference Manual
	diameter
	add_transport/2
	call/4
	origin_state_id/0
	remove_transport/2
	service_info/2
	services/0
	session_id/1
	start/0
	start_service/2
	stop/0
	stop_service/1
	subscribe/1
	unsubscribe/1

	diameterc
	diameter_app
	Mod:peer_up/3
	Mod:peer_down/3
	Mod:pick_peer/4
	Mod:prepare_request/3
	Mod:prepare_retransmit/3
	Mod:handle_answer/4
	Mod:handle_error/4
	Mod:handle_request/3

	diameter_dict
	diameter_transport
	Mod:start/3

	diameter_tcp
	start/3

	diameter_sctp
	start/3

